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FLUCTUATION HYDRODYNAMICS OF THE BROWNIAN MOTION OF A PARTICLE 
It; A FIXED DISPERSELLAYER' 

A.G. BASHKIROV 

The isiflueme of the perturbation exerted by a grid of fixed spherical 
particies, raxdorr.ly distributed in space, on the Brownian diffusion of 
particles suspended in the flow of a fluid which penetrates the grid is 
disucssed. The fixed particles affect the coefficient of diffusion that 
is transverse to the flow in twc ways: on the one hand they reduce it in 
accordance with the Stokes coefficient, and on the other they increase it 
because of the influence of a random velocity field which is generated by 
the flow past the randomly distributed particles. A convective diffusion 
equation is derived on the basis of the Fokker-Planck equation for a 
distribntion function. A stochastic diffusion equation (of Langevin's 
type! obtained with a random velocity field is solved by the method of 
Green's function, whence the desired diffusion coefficient is found. The 
errors allowed when solving a similar problem in /l/ are indicated. 

The fluctuation hydrodynamics of Brownian motion in a homogeneous 
viscous fluid was discussed in /2/ where, in particular, an expression for 
the coefficient of the particle resistance was obtained in terms of the 
fluctuation characteristics of the fluid. Later, the influence of hydro- 
dynamic fluctuations on the diffusion of a particle in a homogeneous fluid 
was examined in /3/: it was shown that the diffusion coefficient of a particle 
that is large with respect to intermolecular distances is determined 
entirely by the thermal fluctuations cf the fluid velocity field. This 
result was also confirmed by the microscope kinetic theory of Brownian 
moticn in 14. 5.t. where an exoression similar to Xubo's formula, for the 
coefficient of resistance of a large particle in terms of the fluctuation 
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of the stress tensor of the fluid was obtained, and it was shown that 
for an incompressible fluid the well-known Stokes formula follows from 
this expression. 

In the present paper we consider the influence of fluctuation hydro- 
dynamics on the diffusion of a suspended particle. The hydrodynamic 
fluctuations are generated by a fluid flow with velcoity vO through a 
rarefied system of randomly distributed fixed particles. These fluctua- 
tions are superimposed on the thermal fluctuations of the fluid velocity, 
and result in an increase in the diffusion coefficient of a suspended 
particle. The purpose of the present paper is to analyse this effect, 

1. The diffusion equation of a Brownian particle. In deriving the diffusion 
equation we shall proceed from the kinetic Fokker-Planck equation obtained in /6/ for an N- 
particle distribution function, fN ((Ri, P,}, t), of the coordinates and momenta of the particles 
with mass Mi, suspended in a viscous fluid: 

(1.1) 

where F,” is the elastic force of the potential interaction (of the hard-sphere type) between 
the particles, F,* = ‘~‘~na,~~‘p, is the Archimedean force acting on a particle of radius ai in 
the fluid with pressure gradient v’p,,.v~~ is the velocity of the fluid, not perturbed by the 
particles, at the point R,, Eii is the resistance coefficient of the i-th particle, and &,(i# 

i) are coefficients describing the hydrodynamic interaction between the particles: these 
coefficients are identical with these in the expression for the force acting on the particle 
in a system where the particles move ir 1 a viscous fluid with velocities Vi = PJM,. 

F, = - z i,, (‘, - vo>) (1.2) 
I 

1n the case under consideration, +he positions of all particles with the exception of 
one (i = 1) are fixed, that is Vi = Vl6,I, where di, is the Kronecker delta. For simplicity 
we shall assume that the velocity \-,cf non-perturbed flowdoes notdependonthe coordinates, and 
is directed along the z-axis. 

We obtain the diffusion equation of a Brownian particle as the first moment equation 
(1.1) by integrating the right and left sides with respect to the cocrdinates of all fixed 
particles and to the momenta of all particles. This gives 

$-- 
d 6. -cc\o - ~c\,J=ln 

an1 1 
(13) 

c(R~. ?)=<I;, c (R,. f) \ ” (R,. t) = (PI -11 - \ ,,) 

(-1‘ s \dRC . . , dRs dP, . dP,,t.-1 is 

The seccnd term on the left of this egiatlcr. describes the ccnvective transfer of the 
particles, and the thrid the diffilsion transfer. Since the diffusion velocity \.d of the 
Brownian particle is unknown, the equaticr. obtained ie net clcsed. Tc close it, we shall use 
the seccnd moment equaticn which can be cttained fror; (1.1) by nutliplpin; all its terms by 
(P, - .II,~,) , and perfcrzing the subsequent integration with respect tc R,....,Rs,P,, . ..,Ps. 
In the apprcxination which is staticnary with respect to tie 6iffusicr. velocity, usir.,- fcr 
(1.2) this eqation reS.Jces tothe forr: 

where the following moments are used: 

(1.4) 

The bars indicate averaging over the coordinates of the fixed particles. 
We shall perform all further calculations in the point-particle approximation. In this 

hydrodynamic approximation the sizes of the particles are considered to be much smaller than 
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any other intrinsic parts of the system, including the mean distances between the particles. 
As we know, such an approximation produces an error of the order of the volume concentration 
of the q-particles, and therefore we can ignore the terms with ii;h and FA which are 
proportional to cp. Then the expression for diffusion flow, 

follows from (1.4). 
On substituting it into the first momentum equation (1.3) we obtain the equation of 

diffusion 

acj@t A(vg + V)Vc-DQ%=O WJ) 

where D is the diffusion coeffitient, and P is the mean perturbation of the stream velocity, 
dependent on the flow around the random configuration of fixed particles. 

2. The stochastic diffusion equation. The subsequent analysis will be similar 
tothatcarried out in /3/, where it was shown that the diffusion of one large particle in a 
purefluidis entirely defined by the fluid-velocity thermal fluctuations, and the initial 
diffusion coefficientwhich does not take into account the influence of these fluctuations was 
assumed to be zero. 

In the system under consideration there occur not only thermal fluctuations of the fluid 
velocity but alsc random perturbations arising in the flow around fixed spheres. The influence 
of the thermal fluctuations has already been allowed for in expression (1.6) for D (this was 
done in /6/ in deriving the Fokker-Planck equation (l.l)?. As shown above, the method of 
deriving the convective diffusion equation from the Pokker-Planck equation includes averaging 
of the perturbation of the convective flow over the coordinates of the randomly distributed 
fixed particles. Allowing for the fluctuation of this perturbation leads to an additional 
modification of the diffusion coefficient. 

Consider, instead of the diffusion equation (1.51, the corresponding Langevin stochastic 
equation in which not the mean disturbance of the fiow velocity but the random quantity v(r)= 

~~l~lZ&jso occurs. Introducing a delta-type source intc the right side of this equation we 
can write it immediately for Green's functicn or for a propagator G (r, ro, t. 1,) which describes 
the probability of detecting the particle at a point r at the instant t under the condition 
of finding it at rO at the initial instant to, 

(P8t--Dr2-(vo- ~(ril.~‘1G(r,ro.1.i,)=6(r_rT0)6(t-_lo) 

witi: the bocr,Szri, cons jiticns G (r. I*, f. to) = 0 for t <f, and (VGJ+n = 0 on the surface 
each particle (n is the normal to this surface! . By the definition of a propagator Fe 

((r- rJ:d = 1 dr (r - r$ G (r, rO. f, to) 

(2.1: 

Cf 
hax*e 

(4.21 

hence, allowing from (2.1) in the approximaticn of point particles, i.e. ignoring the surface 
integrals we obtain 

-$- ((r - rO/)d = v0 7 <v (r)?d 

For comp.;ting ti;e right sides cf these equations we must find the expllc;t form of the 

propagator G (r, rO. t, to). Fror. the Fourier transform of Eq.(2.1!, 

(-- Sa-~~*~vO~~fG(r,~g,“?f=6(r-r~)-v(r)~FG(r,r4r~) 

there follows the integral equation 

G ir, ro. w)= Go(r, rO. w)- 1 dr'Go(r, r'. o) v (r’).T‘,.G(r’, rot W) 

where G,(r, rO, o) is Green's function of the equation 

(--iit,-.-DG* 2 v0.0)GO=6(r--0) 

We find by an iteration method the solution of the integral equation G (r, rc,wf in the 
form of a series in powers of the perVArbation of velocity v(r). To a first approximation it 

has the form 

G (r, re, o)= Go (r. ro, w) - S dr’& (r, r’, w) v (r’).CA (r’. rol w) 
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On subsituting this relation into (2.4), for the root-mean-square shift in a direction 
transverse to v0 we obtain 

- io((z- z#)d =$ c 2 dr(s-zo)v,(r)Go(r--ro, o)- 
s 

(2.5) 

2 \drdr’(z - x0) Go (I - r’, o) v,(r) ua (r’) -$ GO (r’ - ro, o) 
a 

Introducing into (2.5) the new variables p = r -ro, p’ = r’-r. and integrating with respect 
to each of them over the whole volume (which gives an error of the order of cp), 
account the fact that z(r)= 0) we find 

taking into 

The integral 
Fourier form 

- id ((5 - s&j = 
2Di --_2 
0 s 

dp dp’~,Go (P - ~‘3 ~4 rra (P - P’,& Go @‘I 0) 

(r,, (r - r’) = v,(r) va (r’) 1 

term is a convolution; it is therefore convenient to write it in the spatial 

- iw((r-zo)*)d= -$- + &e 
s 

dkr,(- k)Go(k, 0) (2.6) 

Go (k, 6~) = (- iu f Dk* + ivokJ1 (2.7) 

where the relation pX (k) = -i (2n)Wi (k)‘dk, is used. 
Thus, we can see from (2.6) that in the limit as 0'0, the effective diffusion coef- 

ficient in the transverse direction is 

DI=D-ADL=D-+&iii-,,(-k)G,(k.O) (7.8! 

The explicit form of all quantities in this expression and its final form are obtained 
below. 

3. Calculation of the coefficient $I1 and the perturbations of the fluid 
velocity. Consider a particle which moves with velocity Vi = 6,,V, in a fluid whose velocity 
when this particle is not present is v0 Y ' yi. The particle will be subjected to the resistance 

force 
F,=-;i(\'i- Vo-\.J; ;, = (in~)a,, a, = 61,al - (1 - 6,,) a? (3.1) 

where cz is the Stokes coefficient of resistance o f the particle with radius u,. In turn, this 
particle generates the perturbation cf the fluid flow, which in the approximation cf point 
particles can be written as 

~~(r)=~(r-RR,).(--,)=5,T(r-RR,).(\’,--~--,) 

T (r) = (Ehr)r)-’ (I. - rr!r*) 

where T(r) is the Oseen tenser which is Green's function of Stokes equation, and l! is the 
unit tensor. Hence we have 

v,=-2 :;T,,.(v~--, 
j 

- v>), T,,= T(R,- R,) 

and by one of the iteration methods we obtain 

Y’=-~,~,T,~.(\o---~)--~,F~;T,~T,,.(~~--~)- (3.2) 

~;,x:,,T,,T,,~T,;,.(r,- \‘I) - . 

By (1.2) and (3.1) we have the fclloriing expression for the force acting on a particle: 

Tszj(\‘;- v0)=5>(Vz - \‘0- Vi) (3.3) 

On substituting into it the expansion ( 3.2) for vi? and equating the coefficients of Vi-vo. 
we find 

El, =;a L Ez2Z E,Ti,T,,- "f E,ZlTljT,kTki + . . . 
j 

Averaging all the terms of this series over the positions of each of the intermediate 
particles (over which the summation is carried out), we obtain 

fl, = 5, + ~&c~ \ dR,T,tT,, - r 2c 2 ,I b2 cz* dR* dRST,2T2STs1 - , 1 c2 = h-,19 
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where .T2 is the number of fixed particles in the system , and g is the system's volume. In 
the Fourier representation, where T(k) = (i? - kkil?)!(qk”), using the convolution theorem we 

express this series in the form 

(here we use the expression in square-brackets for the sum of a geometric progression). After 
evaluating the integral we find that El, is a diagonal tensor with the coefficients 

where (F* is the volume density of the fixed particles. 
Averaging (3.2) over the coprdinates of all the fixed particles we can satisfy ourselves 

that in the lower order with respect to ~~ the mean perturbation of the flow velocity is in 
fact determined by the expression in Eq,(l.S). Therefore the correlation function l?',,(k) in 
(2.6) can be found in terms of the series (3.2). 

Let us write the averaged product of this series 

v (r) v (r') = {[- ;? 7 T,i -A 522 z TrjTjf f ha 2 TrkTk>Tji + . . .] x (3.5) 

[ - :2 $ T-q - Es2 2 T,,,T,,‘L :zJ 2 T&T,; - . . .])et-:~o~~ 
tmr. 

where the braces @%I are eq'>lvalent to the bar over @. By multiplying the square brackets, 

we can represent (3.5) in the fcrm 

v(r)\. (ill - i>2 - ;ta - . .) : v\‘o\‘o (3.6) 

The expression fcr i.! correspcnds tc the prc%cr cf the first term from the first square 
brackets in (3.5: by aI1 terms from t:he second square brackets with I = i, and 
is of the orjer cf c, an:! the expressior.fori.,with I# 1 isoftheorder of c2. Therefore, in 
the case of sn,a;L c WE can ignore the c-ntribzticn of X,. c Fhysically, this means that the basic 
contributicn to +tne ccrrelaticn fur,ctior. I'(r - r') is that of the disturbances generated in 
the same i-th particie (with s-bseqcent summation over all i). 

Let US now iOGk ir.tc i.,. The second tern contains the factor T,, identical with that in 
front of the sg;are bracket. Beth of them. describe the grcpagation of the perturbaticn from 
the I-th tc the i-th particie. Such a do&If descripticn of the same process is physica'iy i 
unjustified, therefcre the terr. with T ti can be simply dropped since it has a higher order 
cf sTallness with -ecz.ect tc 0, H .A _ -_ 2 compared %lth the first ten in 3,,. Fcr the same reascn, 

in all ~ubse2i;ent - _ ;.? Oi > 3) WE car. omit the tens which are the products from different sq'uare 
brackets with identical i!?iZiSes ir. i3.5,. Then (3.6: takes the fcrm 

orI in the Fc'.rier representeticn U , 

where x is the inverse length of the screening in a dispersion system (in the approximation 
of point particles). 
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4. The diffusion coefficient. On substituting expression (2.7) into (2.8) and 
(3.8), we obtain 

On evaluating this integral we find that 

ml = 4 na2zDc2x-~ [ + + a (I - 2a) - 9 (1 - 4cr*) In =$! 1 , 

1 I this expression takes the form 

3 3 
ALI, x T na12Dcrx-’ = T 1/ 

pD (4.21 

4.2) that 

In the limiting case a< 

It follows from (2.8) and 

DI=D(i++l/$) (4.3) 

The coefficient D also depends on the concentration of the fixed particles. In fact, by 

the definition (1.6) of D and expression (3.4), 

(4.4) 

where D, is the diffusion coefficient of a particle of radius a1 in a pure fluid with viscosity 

9. Thus finally, from (4.3) and (4.4) we obtain 

D,=D&3($- +)l/T] (4.5) 
_ 

Hence it is seen that, depending on the ratio a&, , the diffusion coefficient D, can be 
larger or smaller than the diffusion coefficient D, in a pure fluid. This is connected with 
the change in the relative contribution of two competing influences of the fixed admixtures 
on the diffusion of a Brownian particle. On the one hand, the presence of immobile admixtures 
increases the coefficient of the resistance to the motion of particle rl,, and correspondingly 
reduces the diffusion coefficient (4.4). On the other hand, in a flow past a random configura- 
tion of the admixtures there appears a random velocity field which leads to an additional 
fluctuation motion (relatively to the thermal motion) of the particle and, correspondingly, to 
an increase in the diffusion coefficient. 

The calculation of the coefficient D-in the system described was also discussed in /l/. 
However, the result obtained there is not exactly true since the authors did not take into 
account the difference between D and D,, given by (4.4). Also, in computing AD, they used 
incorrect expression for F,(k) in the form of a product ~+~(li)~*,(-h) where u(k) is the Fourier 
transform of a non-screened velocity field of one mobile particle. Such a choice of F,,(h) 
corresponds to allowing only for the first term of i., in expansion (3.6), or the first term 
in the first square brackets in (3.7). In computing ADL this leads to a double result 
compared with (4.2). Besides this the authors made a mistake in evaluating the integral for 
ADi. and their correction of the transverse-diffusion coefficient calculated was four times 

as great as that given by (4.21 in the present paper. 
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