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FLUCTUATION HYDRODYNAMICS OF THE BROWNIAN MOTION OF A PARTICLE
IN A FIXED DISPERSEL LAYER™

A.G. BASHKIROV

The influence of the perturbation exerted by a grid of fixed spherical
particles, randomly distributed in space, on the Brownian diffusion of
particles suspended in the flow of a fluid which penetrates the grid is
disucssed. The fixed particles affect the coefficient of diffusion that
is transverse to the flow in twc ways: on the one hand they reduce it in
accordance with the Stokes coefficient, and on the other they increase it
because of the influence of a random velocity field which is generated by
the flow past the randomly distributed particles. A convective diffusion
equation is derived on the basis of the Fokker-Planck equation for a
distribution function., A stochastic diffusion equation (of Langevin's
type! obtained with a random velocity field is solved by the method of
Green's function, whence the desired diffusion coefficient is found. The
errors allowed when solving a similar problem in /1l/ are indicated.

The fluctuation hydrodynamics of Brownian motion in a homogeneous
viscous fluid was discussed in /2/ where, in particular, an expression for
the coefficient of the particle resistance was obtained in terms of the
fluctuation characteristics of the fluid, Later, the influence of hydro-
dynamic fluctuations on the diffusion of a particle in a homogeneous fluid
was examined in /3/: it was shown that the diffusion coefficient of & particle
that is large with respect to intermolecular distances is determined
entirely by the thermal fluctuations of the fluid velocity field. This
result was also confirmed by the microscope kinetic theory of Brownian
motien in /4, 5/, where an expression similar to Kubo's formula, for the
coefficient of resistance of a large particle in terms of the fluctuation
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of the stress tensor of the fluid was obtained, and it was shown that
for an incompressible fluid the well-known Stokes formula follows from
this expression.

In the present paper we consider the influence of fluctuation hydro-
dynamics on the diffusion of a suspended particle. The hydrodynamic
fluctuations are generated by a fluid flow with velcoity v, through a
rarefied system of randomly distributed fixed particles, These fluctua-
tions are superimposed on the thermal fluctuations of the fluid velocity,
and result in an increase in the diffusion coefficient of a suspended
particle., The purpose of the present paper is to analyse this effect,

1. The diffusion equation of a Brownian particle. 1In deriving the diffusion
equation we shall proceed from the kinetic Fokker-Planck equation obtained in /6/ for an N-
particle distribution function, f¥ ({R;, P;}, 1), of the coordinates and momenta of the particles

with mass M, suspended in a viscous fluid:

afN P'. ajN . A [IIN _ ) P]_ ! N 0]N

L +2[-ﬁ,—i——dni ~ (P~ F) | = 3 ks (-,T,-J_-—w,- N = KT G (1.1)
ij

where F" is the elastic force of the potential interaction (of the hard-sphere type) between
the particles, Fi# = %/4na3Vp, is the Archimedean force acting on a particle of radius a; in
the fluid with pressure gradient Vp,. V,; is the velocity of the fluid, not perturbed by the
particles, at the point R;, §;; is the resistance coefficient of the i-th particle, and §;; (i
i) are coefficients describing the hydrodynamic interaction between the particles: these
coefficients are identical with thcse in the expressicn for the force acting on the particle

in a system where the particles move in a viscous fluid with velocities V; = P/,

i=~zgu(\v]_‘.o.§) (1.2
J

In the case under consideration, the positions of all particles with the exception of
cne (i =1) are fixed, that is V; = V§,;, where §;; is the Kronecker delta. For simplicity
we shall assume that the velocity v, of non-perturbed flow does not depend on the coordinates, and
is directed along the z-axis.

We obtain the diffusion eguation of a Brownian particle as the first moment equation
(1.1) by integrating the right and left sides with respect to the cocrdinates cof all fixed
particles and to the momenta of all particles. This gives

¢ © 4 cy ¢
at oR; ° oR,

c(Ri- 1) =<1y ROV (R )= (P W — vy

(‘\.d:(" (1‘1)

(4 =(dRy...dRy dP,. .. dPy.47Y

The secend term on the left of this eguaticn describes the convective transfer of the
particies, and the thrid the diffusion transfer. Since the diffusion velocity V, of the
Brownian particle is unknown, the eguaticn obtained is not clecsed. Tc close it, we shall use
the seccnd moment equation which can be cktained from (1.,1) by mutliplying all its terms by
(P; — M;vy) , and perferming the subseguent integration with respect tc R,....,Ry, Py, ... Py
In the appreximation which is staticnary with respect to the diffusicn velccity, using for
(1.3) this eguation reduces tothe form

g kT = (F7F = Fy4) 0 = — Vofiy — CZ v (1.4)
1

s=1
where the feollowing moments are used:

Py — TNy~ W ovg) (Py— M Ny — Mive)y = 8, Mae (R ) kT

<(F|‘" - F:A4)P, 5; S>=—buc(Ry t)(Fi* + Fi4)
N P N . -
Pyt | — S0 = AT <5 > = — bue (Ruy 1)V,

H=1) ’ j=D

The bars indicate averaging over the coordinates of the fixed particles.
We shall perform all further calculations in the point-particle approximation. In this
hydrodynamic approximation the sizes cof the particles are considered to be much smaller than
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any other intrinsic parts of the system, including the mean distances between the particles.
As we know, such an approximation produces an error of the order of the volume concentration
of the ¢-particles, and therefore we can ignore the terms with F* and@ F4 which are
proportional to ¢. Then the expression for diffusion flow,

J= C"d—————§1lkTVC e §11 2 E”Voc‘

follows from (1.4).
On substituting it into the first momentum equation (1.3) we obtain the equation of
diffusion

Beift + (vo+ V) Vo — DV =0 (1.5)
D=kTE, v=E 3 &;vo (1.6)
%1

where D is the diffusion coeffitient, and ¥ is the mean perturbation of the stream velocity,
dependent on the flow around the random configuration of fixed particles.

2. The stochastic diffusion equation. The subsequent analysis will be similar
to that carried out in /3/, where it was shown that the diffusion of one large particle in a
pure fluid is entirely defined by the fluid-velocity thermal fluctuations, and the initial
diffusion coefficient which does not take into account the influence of these fluctuations was
assumed to be zero.

In the system under consideration there occur not only thermal fluctuations of the fluid
velocity but alsc random perturbations arising in the flow around fixed spheres. The influence
of the thermal fluctuations has already been allowed for in expression (1.8) for D {(this was
deone in /6/ in deriving the Fokker-Planck egquation (1.1)). B&s shown above, the method of
deriving the convective diffusion eguation from the Fokker-Planck eguation includes averaging
of the perturbation of the convective flow over the coordinates of the randemly distributed
fixed particles. Allowing for the fluctuation of this perturbation leads to an additional
modification of the diffusion coefficient.

Consider, instead of the diffusion eguation (1.5}, the corresponding Langevin stochastic
equation in which not the mean disturbance of the flow velocity but the random quantity vi{r}=
Eu‘liéjvo occurs. Introducing z delta~-type source intc the right side of this equation we
can write it immediately for Green's functicn or for a propagator G (r, r,, t, {,}) which describes
the probability of detecting the particle at a point r at the instant t under the condition
of finding it at r, at the initial instant I.

(0:0t — DV~ (vg = v (1)) V)G (ry ot tg) == (v — 1) O (t — to) (2.1
with the boundary conditions G {r, re, 1. #,) = 0 for (< #, and (VG)n =0 on the surface of
each particle {(n is the normal to this surface). By the definition of & propagator we have

e —rofsa=\dr(r — v G (r, 0. 1. 1) (2.2

hence, allowing from (2.1) in the approximation of point particles, i.e. ignoring the surface
integrals we obtain

e {{F — Tofya = Ve — {V ()24 {2.3)
e {{ra — Toa)dq == 2DO (1) + 2 {{ra — roa) (Voa -+ Va(T))Dg (24
For computing the right sides c¢f these eguations we must find the explicit form of the
propagator G {r, ty f, tg). From the Fourier transform of Eg. (2.1},
(e t0—DV% = ¥ V)G (1, 1o 0} ==8(r — 1o} — ¥ (r}- VG (1, 10, &}

there follows the integral egquation
G (.t w) = Go (r\ 10, ©) — Sdr’Go (ry v, 0)v (r')- V.G (¥, 1o w)

where G, (r, T, ©) is Green's function of the equation
(—-iw—-»DV?-‘—vo-V‘)ngé(r—ro)

We find by an iteration method the solution of the integral eguation G(r, ro, ® in the
form of a series in powers of the perturbation of velocity v {r}. To a first approximation it
has the form

G(r, rpr ©) = Go (1, Tou 0) — S arGy (v, v’y w) v (') Vo Go vy vgy ©)
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On subsituting this relation into (2.4), for the root-mean-square shift in a direction
transverse to v, we obtain

—iw((z—zo)’>¢=£? +2Sdr(z-—-zo)m60(r—ro,m)-— (2.5)
2 (drdr (= 26) Gy (t — 1, @) v (F) Ve (1

Introducing into (2.5) the new variables p =1t —r,, p' =1r' —rp, and integrating with respect
to each of them over the whole volume (which gives an error of the order of ¢), taking into
account the fact that v, {r) =0) we find

— 1o {(z— Zo)Da =
2TD'—2 Sdpdp’p:Go(p—p’, ®) g (
(Taa (r— 1) =0, (V) va(r) )

The integral term is a convolution; it is therefore convenient to write it in the spatial
Fourier form

, 2Di
—i0{E— 2= + = w(h), S dkT ., (— k) Go (k. ©) (2.6)
Go (k, )= (— iw -~ DE? 4 ivek,)™? (2.7)
where the relation p, (k) = —i (2n)%36 (k)/0k, is used.

Thus, we can see from (2.6) that in the limit as w— 0, the effective diffusion coef-
ficient in the transverse direction is

D.=D-AD, =D— (,ﬂ, S dkT . (— k) Gy (k. 0) (2.8)

The explicit form of all guantities in this expression and its final form are obtained
below.

3. Calculation of the coefficient &, and the perturbations of the fluid
velocity. Consider a particle which moves with velocity V, = §,V; in a fluid whose velocity

when this particle is not present is ¥, = v,. The particle will be subjected to the resistance

force
Fi=—;i(\',-—vo—v,-); ;‘=6:Inaiv a1=61,a1f(1—51‘)a2 (31)

where [; is the Stokes coefficient of resistance cf the particle with radius a;. In turn, this
particle generates the perturbatiorn cf the fluid flow, which in the approximation cf point
particles can be written as

Av (r)=T(r—-—R,)(— F,‘)=t37‘(l’—'R,‘)'(\.,-—\'g - V)

T ()= (8anr) (U =rr/r¥)
where 7 (r) is the Oseen tenscr which is Green's function cf Stokes eguation, and U is the
unit tensor. Hence we have

"i=—‘2 LT (ve—V; =V Ty;=T(R,— R)
7
and by core of the iteration methods we obtain
Vi=— Z‘;irx;'("o - V) - ZA Gl Ty (Vo= Vi) — (3.2)
7 N
DT uTal (Yo~ V) — ...
L
By (1.2) and (3.1} we have the fcllowing expression for the force acting on a particle:
2 Ei(V,—vo)=L(Vi—vo—vy) (3.3)

On substituting into it the expansion (3.2) for v;, ané equating the coefficients of V; — v,
we find

§n= ; 2-1 ij ,x-u122.,—rT:;T;ka.+~u

Averaging all the terms of this series over the positions of each of the intermediate
particles (over which the summation is carried out), we obtain

En=101 + L0 SdRszTn — L%t (dRz dRsT 12 2sTar — ..., ca=Ny/Q
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where N, is the number of fixed particles in the system, and Q is the system's volume. 1In
the Fourier representaticn, where T (k) = (U — kk/k?)/(nk?), using the convolution theorem we
express this series in the form

Bt sy (0483 (1 o (e
;?2%2 (—“-i{-y— .. ] ‘-—‘-‘Ql -+ Cl Czcst;%?r(U ”%‘)m

(here we use the expression in square brackets for the sum of a gecmetric progression). After
evaluating the integral we find that §u is a diagonal tensor with the coefficients

- ; — 4
§xx=-§x(i—’~3%1 %), @eaTﬁazsfz (3.4

where ¢, is the volume density of the fixed particles,

Averaging (3.2) over the coprdinates of all the fixed particles we can satisfy ourselves
that in the lower order with respect to ¢, the mean perturbation of the flow velocity is in
fact determined by the expression in Eg.{1.5). Therefore the correlation function T, k) in
{2,6} can be found in terms of the series (3.2).

Let us write the averaged product of this series

vIOVEO) = L2 T+ 2 Tl ;’s% TalyTs+ ... % (3.5)
1 LM 2
[- ;2 2 T?'I - ;22 ?_ Tr'meI - ;23 E Tr’nTanrm' e -]}mf“o“&
i im tmn

where the braces {®},, are equivalent to the bar over ¢. By multiplying the square brackets,

we can represent (3.5} in the fcrm

VOV ()=l — 7y ;7~a—- S R AT (3.6)
9.,_—_(§»Egdnzr.,[ p— an Tv,,‘Tmm,‘.]
ro= N (aRaRT, T — 2 S (R, 77— ]
N m
[SERY]
;32 '—;3;-2 S deRT. T».z [T~ ;- ;QT,']'TJ,‘—" 'ES'- Z SdRmTr an,z e ]
1 mi= i}

The expressicn for 14, correspends tc the product cof the first term from the first sguare
brackets in (3.2} by all terms from the second sguare brackets with =i, and

is of the order cf ¢, and the expressiorn for 2, with /55 i isof the oxder of ¢® Therefore, in

the case of small ¢ we can igrore the contribution of Ay, Physically, this means that the basic.
contribution to <he cecrrelatien functiorn T (r —r') is that of the disturbances generated in

the same /-th particle (with subseguent surmation over all i).

Let us now look intc 7y The second term contains the factor Ty; identical with that in
front of the sguare bracket, Both of ther describe the prepagation of the perturbaticn from
the i-th tc the j-th particle. Such a douklie descripticn of the same process is physically
ur.justified, therefcre the term with T,; can be simply dropped since it has a higher order
cf smallness with respect tc e, R,, compared with the first term in 2, For the same reascrn,
in all subseguent 7, (i >+ 3) we can omit the terms which are the products from different sguare
brackets with identical indides ir (2.5). Then (3.€) takes the feorm

SV ) = e LRy, Ty — Loy (dRGT T (3.7)
teest S dRs AR T T s ss — .1 Ty faco (ARG 7T —
Lodea? S dR; dR T T 43T g0 — .. .‘ TNV
or, in the Feourier representaticn,
Poa (k) = 320500 [T (k) — Saea (T (k) — St (TP — .. Jo = {3.8)
¥ k 2k 2 k22

L2eore? { = (Bnasvo)’e;

3
VmE s R Lane/ (B2
=V Term =V Bagges

e (k~ + ¥R

»

where x is the inverse length of the screening in a dispersion system (in the approximation
cf point particles).
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4. The diffusion coefficient. oOn substituting expression (2.7) into (2.8) and
(3.8), we obtain

(67240}t € k 2k 2
AD, = (2,‘;3 . S dkkl e ,‘:)18([)!;,: ok} (4.1)

On evaluating this integral we find that

AD| = -3 na?Dept [-;— +o(l—20)— 4 (1—4a9in 2EL],
a——ﬂ

Yo
In the limiting case a <€ 1, this expression takes the form

AD, =% magDer =31/ %D (4.2)

It follows from (2.8) and (4.2) that

D_L=D(1+%]/%:> (4.3)

The coefficient D also depends on the concentration of the fixed particles. In fact, by
the definition (1.6) of D and expression (3.4),

D=D,(1—32 %), D=

2

kT
6712y

(4.4)

J

where D, is the diffusion coefficient of a particle of radius e, in a pure fluid with viscosity
M. Thus finally, from (4.3) and (4.4) we obtain

D, =nft—3(& - 1)/ %] (4.5)

Hence it is seen that, depending on the ratio a,/a, , the diffusion coefficient D, can be
larger or smaller than the diffusion coefficient D, in a pure fluid. This is connected with
the change in the relative contribution of two competing influences of the fixed admixtures
on the diffusion of a Brownian particle. On the one hand, the presence of immobile admixtures
increases the coefficient of the resistance tc the motion of particle §;,, and correspondingly
reduces the diffusion coefficient (4.4). On the other hand, in a flow past a random configura-
tion of the admixtures there appears a random velocity field which leads to an additional
fluctuation motion (relatively to the thermal mction) of the particle and, correspondingly, to
an increase in the diffusion coefficient.

The calculation of the coefficient D in the system described was alsoc discussed in /1/.
However, the result obtained there is not exactly true since the authors did not take into
account the difference between D and D, given by (4.4). Also, in computing AD, they used
incorrect expression for T (k) in the form of a product cu,(k)ix(—k) where wu(k) is the Fourier
transform of a non-screened velocity field of one mobile particle., Such a choice of Ty (k)
corresponds to allowing only for the first term of 4, in expansion (3.6), or the first term
in the first square brackets in (3.7). In computing AD, this leads to a double result
compared with (4.2). Besides this the authors made a2 mistake in evaluating the integral for
AD,. and their correction of the transverse-diffusion coefficient calculated was four times

as great as that given by (4.2} in the present paper.
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